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Part 1: Introduction and Background



Challenge Overview
● Challenge: Develop an asymmetrical correlation matrix showing the degree of 

intercompany relationships between the S&P 500 companies
○ Fully construct 500 by 500 matrix solely using Wikipedia data 
○ Use natural language processing techniques on unstructured data to 

determine magnitude of correlations
○ Value (i, j) is relative link of company j to company i
○ Sum of values across rows, representing relative links of j’s to company i, 

add up to 1



Economic Intuition: Solution Motivation 
● Relationships give perspective on economic linkage between companies
● Forward direction: Given substantial change in specific company’s financial 

performance, how significantly are each of the other companies affected?
○ Know which companies a change in Apple’s performance would affect most

● Reverse direction: How significantly is a specific company affected by 
changes in each of the other companies?
○ Know which companies to evaluate if we’re trying to predict Apple’s financial 

performance



Economic Intuition: The Matrix
● Value (i, j) is relative link of company j to company i 

○ Measure of how significantly company i is associated with company j

● Rows add up to 1: Shows how companies across row are proportionally linked 
to company i                                                                                                                                                                                                           

● (i, i) is 0  for all i: To prevent detracting from relationships of other companies 
to company i 



Economic Intuition: The Matrix
● Value (i, j) represents proportional strength of both forward and reverse 

direction economic relationships of company j on company i
○ Forward: How a change in i proportionally affects j compared to effect on other 

companies
○ Reverse: How i is affected by a change in j compared to a change in other 

companies

● Matrix is asymmetric: Suppose QCOM (Apple parts manufacturer) is more 
associated with AAPL than AAPL is associated with QCOM
○ Value (QCOM, AAPL) > Value (AAPL, QCOM)



Part 2: General Approach



Objectives
● Use data available on Wikipedia pages to generate quantitative basis for 

calculating link from one company to another
● Quantitatively define a link from one company to another, such that produced 

results are economically consistent and applicable
● Definition of link should mimic and encapsulate complex, real-world nature of 

intercompany relationships 



Approach to Implementation
● Economic factors: Definition of link should be based on several key economic 

factors that are easily measurable and comparable between companies, such 
as market sector, geographic location, and company size

● Company history and context: Definition of link should consider what the 
company does, as well as any relationships to other companies 

● Wikipedia pages provide both sources of information, through each company’
s data box and article

● Two-pronged approach: Use both factor-based and context-based 
information to calculate links



Part 3: Technical Approach



Concept: Factor-Based Analysis
● Objective: Examine and compare key factors of companies we know to be 

economically significant, such as market sector, location, and company size
● Implementation:

○ Weight key factors individually based on their contributing significance to 
similarities between companies

○ Use a proprietary Manual Covariance Analysis (MCA) technique on values in data 
box to determine measure of correlation based on these factors 

○ Produce a matrix that takes into account key factors of companies, forming an 
economic backbone for next step of analysis



Concept: Content-Based Analysis 
● Objective: Encapsulate and compare remaining context of companies, 

including company descriptions and relationships to other companies
● Implementation:

○ Scrape article content of companies’ Wikipedia pages
○ Use Latent Dirichlet Allocation (LDA) technique to compare keyword similarities 

between companies, and establish measures of similarity
○ Produce a final matrix that considers both factor-based and content-based data in 

determining intercompany relationships
● Partially implemented, project left for future work



Technical Background and Summary
● Technical Analysis implemented with Python

○ Packages: Numpy, Urllib2
● Wikipedia Data Extraction 

○ Packages: BeautifulSoup, Pywikibot
● Two Main Approaches:

○ Factor-Based Analysis
○ Content-Based Analysis

● Goal: Output 500 x 500 Correlation Matrix
○ Each (i, j) entry of the matrix indicates relationship of company i with company j
○ Every row should sum to 1 by Normalization



Approach: Factor-Based Analysis
● Analyzed degree of similarity: (AS denotes “asymmetry” and S “symmetry”)

○ Market Sector: if two companies are in same sector, correlation will be higher (S)
○ Sub-Industry: if same sub-industry, even stronger correlation than solely sector (S)
○ Geographic Location: if geographically close, correlation will be stronger (S)
○ Company Size: company of larger size will have stronger influence on smaller (AS)

● Data obtained from “List of S&P 500 Companies” Wikipedia Table
● Foundation for content-based analysis
● Factors given different weightings (equation to follow)



Approach: Equation Form



Implementation
● All programming complete in Python, using following notable libraries:

○ Numpy: Conveniently manipulating the 2D matrices (optimized speeds)
○ re: Regular expressions package in Python -- primarily used for cleaning the data
○ pywikibot: Web scraper provided that is capable of more easily parsing Wikipedia pages
○ urllib2: Able to obtain the HTML contents of a given page: primarily for LDA
○ BeautifulSoup: Used to extract the tags from page for doing concept extraction

● General algorithmic steps of analysis:
○ Extract raw contents of the Wikipedia page (pywikibot)
○ Data cleaning: format the data into recognizable/accurate form (i.e. numbers should be int)

■ Resulted in a 2D array
○ Perform analysis on cleaned data
○ Normalize the matrix



Implementation: Text Cleanup
● A lot of difficulties due to problematic scraping and lengths of rows
● Ended up assuming the most common format of contents and extracting
● Three main cleanup steps:

○ Remove extraneous characters
○ Split the contents of the table
○ Only retain the non-empty cells



Implementation: Sector and Sub-Industry
● Rationale: external features affect sectors in similar manners

○ Example: Widespread software bug (across all OS) will cause entire software sector decrease
○ Companies linked by their being software

● Similar effect is felt for sub-industry
○ Given more weight than industry as far fewer share same sub-industry
○ Similar to reducing weights of frequent words in NLP algorithms



Implementation: Sector and Sub-Industry <Code>
● Very simple code
● Determine whether or not the two same sector
● Identical for the sub industry



Implementation: Geographical Proximity
● Rationale: Geographic location has some fairly uniform features

○ General sentiment towards industries (i.e. strikes in region) cause widespread disdain

● Exact location of the companies not particularly relevant
○ Capturing populace more than influence
○ External factors being shared

● Broke into 10 geographic regions:
○ Standard allotment scheme (right)
○ Regions of greater difference far apart



Implementation: Geographical Proximity <Code>
● Determine the location (from cleaned data)
● Look up region and apply algorithm scaling score



Implementation: Company Size
● Rationale: Size of a company typically indicative of its current influence

○ Asymmetric relation
■ Small company A will have low impact on large company B
■ Vice versa for B on A

● Taken as multiplying factor: if no current influence already -- does not change
○ If no match between sectors or location, comparison of size should not increase
○

● Had multiplicative factor of:



Implementation: Company Size <Code>
● Had to extract the Wikipedia page
● Extract the info in “side box”
● Parse through and find employees

○ Default = 25250 (average value)

● With this provide number, calculate



Implementation: Programming Optimization
● Assuming there are generically n companies (n = 500 in this case)

○ Not particularly large dataset -- algorithmic runtime not particularly significant

● Querying online is very slow process
○ Since had to access each of the company’s employee size several times, saved these values
○ Values were cached in dictionary: key of company, value of employee size
○ Allowed lookup of values in O(1) time

● Full algorithm runs in O(n2)
○ Have to iterate through each of the companies and compute covariance



Implementation: Content-Based Analysis
● Alternative approach to deduce further relationships between companies
● Utilizes Natural Language Processing techniques, specifically Latent Dirichlet 

Allocation 
● Data obtained from each individual company Wikipedia pages
● Intended to add asymmetricity to the final correlation matrix 

○ Change in Company A → Company B =/= Company B → Company A

● Analyzes individual word occurrences to retroactively create “topics”
● Assigns probabilistically a topic to each document



Implementation: LDA
● All programming complete in Python, in addition to packages noted earlier

○ NLTK - Natural Language Toolkit, for NLP analysis in Python
○ Stop-Words - Detects concept-less words in specific languages 
○ Tokenizer / PorterStemmer - Tools to clean raw text data and remove “stop-words”

● General algorithmic steps of analysis:
○ Extract n paragraphs of text from company-specific Wikipedia pages
○ Data cleaning: Perform analysis on cleaned data

■ Tokenize each paragraph into individual words
○ Fits the data via unsupervised modeling onto k set of topics
○ Probabilistically correlates each company-text onto the most-likely topic



Implementation <Code>: LDA

● Takes the text from the Wiki page
○ Extracts the HTML of pages using requests
○ Determines “page text” by value in <p> tags

● Breaks the text into several “tokens”
● Used for performing concept extraction



Implementation <Code>: LDA

● Implements the LDA model, 
specifically topical analysis

● Normalizes the probabilities 
associated with each topic

● Generates topic with highest 
probability for each company



Part 4: Results and Discussion



Results: Numerical
● Numerical results: asymmetric

○ Piece of the 500x500 matrix



Results: Visualization
● Both the same data visualizations -- left is scaled to be more sensitive
● Right exposes lack of symmetry



Results: Natural Language Processing

Partial output of LDA Analysis



Strengths of Approach
● MCA creates factor-based fundamentals for second part of analysis, 

increasing accuracy and embodying fundamental economic intuition
● LDA analyzes remaining content, capturing diverse, unexpected correlatory 

factors that MCA may not capture
● Larger companies correlate to each other stronger than smaller companies 

do; this phenomenon is accounted for by large companies having longer 
Wikipedia pages. Resulting LDA analysis would thus yield a stronger 
correlation for larger companies.



Weaknesses of Approach
● Approach can be improved using market sector-specific factors, but we do 

not have the background to implement such
● Two-part analysis process grants increased accuracy, but at the cost of 

increased runtime
● Only runs using feature extraction rather than concept



Part 5: Conclusions and Future Work



Future Improvements
● For current algorithm

○ Sector/Sub-industry comparison would extend beyond comparing names directly
○ Specifically: “Technology” sectors might affect “Industrial” sectors

● Determine more accurate metrics for company influence
○ Solely using number of employees seems quite biased
○ Small companies may apply hold influence on niche (Uber in early stages)

● Apply LDA to algorithm
○ Would perform concept extraction on the pages
○ Determine whether any similarity/overlap between the pages



Conclusions
● Found asymmetric covariance matrix for S&P 500 Companies
● Implemented using features extractions with Python and pywikibot scripts
● Learned how to clean raw data available online

○ Many difficulties due to inconsistencies in formatting

● Highly applicable to similar projects due to prevalence of web data



Questions?
Thank you for your attention!


