
Patrick Zeng, DoWon Kim, Yash Patel, Jennifer Yin
Princeton University

Goldman Sachs
2016 Quant Quest

Presentation Outline
Part 1: Introduction and Background

Part 2: General Approach

Part 3: Technical Approach

Part 4: Results and Discussion

Part 5: Conclusions and Future Work

Part 1: Introduction and Background

Challenge Overview
● Challenge: Develop an asymmetrical correlation matrix showing the degree of

intercompany relationships between the S&P 500 companies
○ Fully construct 500 by 500 matrix solely using Wikipedia data
○ Use natural language processing techniques on unstructured data to

determine magnitude of correlations
○ Value (i, j) is relative link of company j to company i
○ Sum of values across rows, representing relative links of j’s to company i,

add up to 1

Economic Intuition: Solution Motivation
● Relationships give perspective on economic linkage between companies
● Forward direction: Given substantial change in specific company’s financial

performance, how significantly are each of the other companies affected?
○ Know which companies a change in Apple’s performance would affect most

● Reverse direction: How significantly is a specific company affected by
changes in each of the other companies?
○ Know which companies to evaluate if we’re trying to predict Apple’s financial

performance

Economic Intuition: The Matrix
● Value (i, j) is relative link of company j to company i

○ Measure of how significantly company i is associated with company j

● Rows add up to 1: Shows how companies across row are proportionally linked
to company i

● (i, i) is 0 for all i: To prevent detracting from relationships of other companies
to company i

Economic Intuition: The Matrix
● Value (i, j) represents proportional strength of both forward and reverse

direction economic relationships of company j on company i
○ Forward: How a change in i proportionally affects j compared to effect on other

companies
○ Reverse: How i is affected by a change in j compared to a change in other

companies

● Matrix is asymmetric: Suppose QCOM (Apple parts manufacturer) is more
associated with AAPL than AAPL is associated with QCOM
○ Value (QCOM, AAPL) > Value (AAPL, QCOM)

Part 2: General Approach

Objectives
● Use data available on Wikipedia pages to generate quantitative basis for

calculating link from one company to another
● Quantitatively define a link from one company to another, such that produced

results are economically consistent and applicable
● Definition of link should mimic and encapsulate complex, real-world nature of

intercompany relationships

Approach to Implementation
● Economic factors: Definition of link should be based on several key economic

factors that are easily measurable and comparable between companies, such
as market sector, geographic location, and company size

● Company history and context: Definition of link should consider what the
company does, as well as any relationships to other companies

● Wikipedia pages provide both sources of information, through each company’
s data box and article

● Two-pronged approach: Use both factor-based and context-based
information to calculate links

Part 3: Technical Approach

Concept: Factor-Based Analysis
● Objective: Examine and compare key factors of companies we know to be

economically significant, such as market sector, location, and company size
● Implementation:

○ Weight key factors individually based on their contributing significance to
similarities between companies

○ Use a proprietary Manual Covariance Analysis (MCA) technique on values in data
box to determine measure of correlation based on these factors

○ Produce a matrix that takes into account key factors of companies, forming an
economic backbone for next step of analysis

Concept: Content-Based Analysis
● Objective: Encapsulate and compare remaining context of companies,

including company descriptions and relationships to other companies
● Implementation:

○ Scrape article content of companies’ Wikipedia pages
○ Use Latent Dirichlet Allocation (LDA) technique to compare keyword similarities

between companies, and establish measures of similarity
○ Produce a final matrix that considers both factor-based and content-based data in

determining intercompany relationships
● Partially implemented, project left for future work

Technical Background and Summary
● Technical Analysis implemented with Python

○ Packages: Numpy, Urllib2
● Wikipedia Data Extraction

○ Packages: BeautifulSoup, Pywikibot
● Two Main Approaches:

○ Factor-Based Analysis
○ Content-Based Analysis

● Goal: Output 500 x 500 Correlation Matrix
○ Each (i, j) entry of the matrix indicates relationship of company i with company j
○ Every row should sum to 1 by Normalization

Approach: Factor-Based Analysis
● Analyzed degree of similarity: (AS denotes “asymmetry” and S “symmetry”)

○ Market Sector: if two companies are in same sector, correlation will be higher (S)
○ Sub-Industry: if same sub-industry, even stronger correlation than solely sector (S)
○ Geographic Location: if geographically close, correlation will be stronger (S)
○ Company Size: company of larger size will have stronger influence on smaller (AS)

● Data obtained from “List of S&P 500 Companies” Wikipedia Table
● Foundation for content-based analysis
● Factors given different weightings (equation to follow)

Approach: Equation Form

Implementation
● All programming complete in Python, using following notable libraries:

○ Numpy: Conveniently manipulating the 2D matrices (optimized speeds)
○ re: Regular expressions package in Python -- primarily used for cleaning the data
○ pywikibot: Web scraper provided that is capable of more easily parsing Wikipedia pages
○ urllib2: Able to obtain the HTML contents of a given page: primarily for LDA
○ BeautifulSoup: Used to extract the tags from page for doing concept extraction

● General algorithmic steps of analysis:
○ Extract raw contents of the Wikipedia page (pywikibot)
○ Data cleaning: format the data into recognizable/accurate form (i.e. numbers should be int)

■ Resulted in a 2D array
○ Perform analysis on cleaned data
○ Normalize the matrix

Implementation: Text Cleanup
● A lot of difficulties due to problematic scraping and lengths of rows
● Ended up assuming the most common format of contents and extracting
● Three main cleanup steps:

○ Remove extraneous characters
○ Split the contents of the table
○ Only retain the non-empty cells

Implementation: Sector and Sub-Industry
● Rationale: external features affect sectors in similar manners

○ Example: Widespread software bug (across all OS) will cause entire software sector decrease
○ Companies linked by their being software

● Similar effect is felt for sub-industry
○ Given more weight than industry as far fewer share same sub-industry
○ Similar to reducing weights of frequent words in NLP algorithms

Implementation: Sector and Sub-Industry <Code>
● Very simple code
● Determine whether or not the two same sector
● Identical for the sub industry

Implementation: Geographical Proximity
● Rationale: Geographic location has some fairly uniform features

○ General sentiment towards industries (i.e. strikes in region) cause widespread disdain

● Exact location of the companies not particularly relevant
○ Capturing populace more than influence
○ External factors being shared

● Broke into 10 geographic regions:
○ Standard allotment scheme (right)
○ Regions of greater difference far apart

Implementation: Geographical Proximity <Code>
● Determine the location (from cleaned data)
● Look up region and apply algorithm scaling score

Implementation: Company Size
● Rationale: Size of a company typically indicative of its current influence

○ Asymmetric relation
■ Small company A will have low impact on large company B
■ Vice versa for B on A

● Taken as multiplying factor: if no current influence already -- does not change
○ If no match between sectors or location, comparison of size should not increase
○

● Had multiplicative factor of:

Implementation: Company Size <Code>
● Had to extract the Wikipedia page
● Extract the info in “side box”
● Parse through and find employees

○ Default = 25250 (average value)

● With this provide number, calculate

Implementation: Programming Optimization
● Assuming there are generically n companies (n = 500 in this case)

○ Not particularly large dataset -- algorithmic runtime not particularly significant

● Querying online is very slow process
○ Since had to access each of the company’s employee size several times, saved these values
○ Values were cached in dictionary: key of company, value of employee size
○ Allowed lookup of values in O(1) time

● Full algorithm runs in O(n2)
○ Have to iterate through each of the companies and compute covariance

Implementation: Content-Based Analysis
● Alternative approach to deduce further relationships between companies
● Utilizes Natural Language Processing techniques, specifically Latent Dirichlet

Allocation
● Data obtained from each individual company Wikipedia pages
● Intended to add asymmetricity to the final correlation matrix

○ Change in Company A → Company B =/= Company B → Company A

● Analyzes individual word occurrences to retroactively create “topics”
● Assigns probabilistically a topic to each document

Implementation: LDA
● All programming complete in Python, in addition to packages noted earlier

○ NLTK - Natural Language Toolkit, for NLP analysis in Python
○ Stop-Words - Detects concept-less words in specific languages
○ Tokenizer / PorterStemmer - Tools to clean raw text data and remove “stop-words”

● General algorithmic steps of analysis:
○ Extract n paragraphs of text from company-specific Wikipedia pages
○ Data cleaning: Perform analysis on cleaned data

■ Tokenize each paragraph into individual words
○ Fits the data via unsupervised modeling onto k set of topics
○ Probabilistically correlates each company-text onto the most-likely topic

Implementation <Code>: LDA

● Takes the text from the Wiki page
○ Extracts the HTML of pages using requests
○ Determines “page text” by value in <p> tags

● Breaks the text into several “tokens”
● Used for performing concept extraction

Implementation <Code>: LDA

● Implements the LDA model,
specifically topical analysis

● Normalizes the probabilities
associated with each topic

● Generates topic with highest
probability for each company

Part 4: Results and Discussion

Results: Numerical
● Numerical results: asymmetric

○ Piece of the 500x500 matrix

Results: Visualization
● Both the same data visualizations -- left is scaled to be more sensitive
● Right exposes lack of symmetry

Results: Natural Language Processing

Partial output of LDA Analysis

Strengths of Approach
● MCA creates factor-based fundamentals for second part of analysis,

increasing accuracy and embodying fundamental economic intuition
● LDA analyzes remaining content, capturing diverse, unexpected correlatory

factors that MCA may not capture
● Larger companies correlate to each other stronger than smaller companies

do; this phenomenon is accounted for by large companies having longer
Wikipedia pages. Resulting LDA analysis would thus yield a stronger
correlation for larger companies.

Weaknesses of Approach
● Approach can be improved using market sector-specific factors, but we do

not have the background to implement such
● Two-part analysis process grants increased accuracy, but at the cost of

increased runtime
● Only runs using feature extraction rather than concept

Part 5: Conclusions and Future Work

Future Improvements
● For current algorithm

○ Sector/Sub-industry comparison would extend beyond comparing names directly
○ Specifically: “Technology” sectors might affect “Industrial” sectors

● Determine more accurate metrics for company influence
○ Solely using number of employees seems quite biased
○ Small companies may apply hold influence on niche (Uber in early stages)

● Apply LDA to algorithm
○ Would perform concept extraction on the pages
○ Determine whether any similarity/overlap between the pages

Conclusions
● Found asymmetric covariance matrix for S&P 500 Companies
● Implemented using features extractions with Python and pywikibot scripts
● Learned how to clean raw data available online

○ Many difficulties due to inconsistencies in formatting

● Highly applicable to similar projects due to prevalence of web data

Questions?
Thank you for your attention!

