Goldman Sachs
2076 Quant Quest

Patrick Zeng, DoWon Kim, Yash Patel, Jennifer Yin
Princeton University

Presentation Outline

Part 1: Introduction and Background
Part 2: General Approach
Part 3: Technical Approach

Part 4: Results and Discussion

Part 5: Conclusions and Future Work

Part 1: Introduction and Background

BN

Challenge Overview

e Challenge: Develop an asymmetrical correlation matrix showing the degree of
intercompany relationships between the S&P 500 companies
o Fully construct 500 by 500 matrix solely using Wikipedia data
o Use natural language processing techniques on unstructured data to
determine magnitude of correlations
o Value (i,) is relative link of company j to company i
o Sum of values across rows, representing relative links of j's to company i,

add up to 1

Economic Intuition: Solution Motivation

e Relationships give perspective on economic linkage between companies
e Forward direction: Given substantial change in specific company’s financial
performance, how significantly are each of the other companies affected?
o Know which companies a change in Apple’s performance would affect most
e Reverse direction: How significantly is a specific company affected by
changes in each of the other companies?
o Know which companies to evaluate if we're trying to predict Apple’s financial

performance

Economic Intuition: The Matrix

e Value (i, j) is relative link of company j to company i
o Measure of how significantly company i is associated with company j

e Rows add up to 1: Shows how companies across row are proportionally linked

to company i
e (i,i)is 0 foralli: To prevent detracting from relationships of other companies

to company i

al ap - Q4
sl G2 -~ G

am2 Amn

Am1

Economic Intuition: The Matrix

e Value (i, j) represents proportional strength of both forward and reverse
direction economic relationships of company j on company i
o Forward: How a change in i proportionally affects j compared to effect on other
companies
o Reverse: How i is affected by a change in j compared to a change in other
companies
e Matrix is asymmetric: Suppose QCOM (Apple parts manufacturer) is more
associated with AAPL than AAPL is associated with QCOM

o Value (QCOM, AAPL) > Value (AAPL, QCOM)

Part 2: General Approach

BN

Objectives

e Use data available on Wikipedia pages to generate quantitative basis for
calculating link from one company to another

e Quantitatively define a link from one company to another, such that produced
results are economically consistent and applicable

e Definition of link should mimic and encapsulate complex, real-world nature of

intercompany relationships

Approach to Implementation

Economic factors: Definition of link should be based on several key economic
factors that are easily measurable and comparable between companies, such
as market sector, geographic location, and company size

Company history and context: Definition of link should consider what the
company does, as well as any relationships to other companies

Wikipedia pages provide both sources of information, through each company’
s data box and article

Two-pronged approach: Use both factor-based and context-based

information to calculate links

Part 3: Technical Approach

BN

Concept: Factor-Based Analysis

e Objective: Examine and compare key factors of companies we know to be
economically significant, such as market sector, location, and company size
e Implementation:
o Weight key factors individually based on their contributing significance to
similarities between companies
o Use a proprietary Manual Covariance Analysis (MCA) technique on values in data
box to determine measure of correlation based on these factors
o Produce a matrix that takes into account key factors of companies, forming an
economic backbone for next step of analysis

Concept: Content-Based Analysis

e Objective: Encapsulate and compare remaining context of companies,

including company descriptions and relationships to other companies
e Implementation:

o Scrape article content of companies’ Wikipedia pages
o Use Latent Dirichlet Allocation (LDA) technique to compare keyword similarities
between companies, and establish measures of similarity
o Produce a final matrix that considers both factor-based and content-based data in
determining intercompany relationships
e Partially implemented, project left for future work

Technical Background and Summary

e Technical Analysis implemented with Python
o Packages: Numpy, Urllib2
e Wikipedia Data Extraction
o Packages: BeautifulSoup, Pywikibot
e Two Main Approaches:
o Factor-Based Analysis
o Content-Based Analysis
e Goal: Output 500 x 500 Correlation Matrix

o Each (i, j) entry of the matrix indicates relationship of company i with company j
o Every row should sum to 1 by Normalization

Approach: Factor-Based Analysis

e Analyzed degree of similarity: (AS denotes “asymmetry” and S “symmetry”)
o Market Sector: if two companies are in same sector, correlation will be higher (S)
o Sub-Industry: if same sub-industry, even stronger correlation than solely sector (S)
o Geographic Location: if geographically close, correlation will be stronger (S)

o Company Size: company of larger size will have stronger influence on smaller (AS)
e Data obtained from “List of S&P 500 Companies” Wikipedia Table
e Foundation for content-based analysis
e Factors given different weightings (equation to follow)

Approach: Equation Form

SiZEi
Size;

g E—|Regiﬂni—Reg ianj|

Cﬂrr(i’j) —— (SEﬂtﬂT(i,,j) + SubSEEIDT(i,j)) '

1 if Sector; = Sector;

Sector(i,j) = [
@) 0 otherwise

if SubSector; = SubSector;
otherwise

SubSector(i,j) = [g

Implementation

e All programming complete in Python, using following notable libraries:

Numpy: Conveniently manipulating the 2D matrices (optimized speeds)

re: Regular expressions package in Python -- primarily used for cleaning the data
pywikibot: Web scraper provided that is capable of more easily parsing Wikipedia pages
urllib2: Able to obtain the HTML contents of a given page: primarily for LDA
BeautifulSoup: Used to extract the tags from page for doing concept extraction

e General algorithmic steps of analysis:

o Extract raw contents of the Wikipedia page (pywikibot)
o Data cleaning: format the data into recognizable/accurate form (i.e. numbers should be int)
m Resulted in a 2D array
o Perform analysis on cleaned data

o Normalize the matrix

O O O O O

Implementation: Text Cleanup

e A lot of difficulties due to problematic scraping and lengths of rows
e Ended up assuming the most common format of contents and extracting

e Three main cleanup steps:
o Remove extraneous characters
o Split the contents of the table
o Only retain the non-empty cells

clean_text = [[filter{lambda x : len{x) = 1, [word.encode('utf-8'}) word re.sub(' [\n{\[\] |10,
‘', row).replace(' ', '“t'J.split(':\t'}1)][@] row broken_text]
symbols = [company[@].split('Symbol')[-1]
company clean_text]
names = [company[1].split('Symbol')[-1]
company clean_text]

companies = []
i range(d, len{symbols)):
companies.append([symbols[i]] + clean_text[i] [1:])

Implementation: Sector and Sub-Industry

e Rationale: external features affect sectors in similar manners

o Example: Widespread software bug (across all OS) will cause entire software sector decrease
o Companies linked by their being software

e Similar effect is felt for sub-industry
o Given more weight than industry as far fewer share same sub-industry
o Similar to reducing weights of frequent words in NLP algorithms

1 if Sector; = Sector;

Sector(i,j) = [
@) 0 otherwise

if SubSector; = SubSector;
otherwise

SubSector(i,j) = [g

Implementation: Sector and Sub-Industry <Code>

e Very simple code
e Determine whether or not the two same sector
e Identical for the sub industry

companyA [SECTOR] .strip() companyB [SECTOR] . strip():
covariance_score '

companyA [SUB_SECTOR] .strip() companyB [SUB_SECTOR] .strip():
covariance_score

Implementation: Geographical Proximity

e Rationale: Geographic location has some fairly uniform features
o General sentiment towards industries (i.e. strikes in region) cause widespread disdain
e Exact location of the companies not particularly relevant

o Capturing populace more than influence
o External factors being shared

. . . X
e Broke into 10 geographic regions: .‘
o Standard allotment scheme (right) h X _ I
o Regions of greater difference far apart VIII v i

\ I
VI

E—|Regioni—Regianj-| IX

Implementation: Geographical Proximity <Code>

e Determine the location (from cleaned data)
e Look up region and apply algorithm scaling score

def find_region(company):
LOCATION y.
text_loc - company [LOCATION].split('<')[@]

text_loc "Electrical" text_loc:
company [LOCATION] .split('<')[@].strip(])

company [LOCATION - 1].split('<')[@].strip()
loc:

get_region(loc.split(', ") [1]l.strip())
get_region(loc)

Implementation: Company Size

e Rationale: Size of a company typically indicative of its current influence
o Asymmetric relation
m Small company A will have low impact on large company B
m ViceversaforBonA
e Taken as multiplying factor: if no current influence already -- does not change
o If no match between sectors or location, comparison of size should not increase

e Had multiplicative factor of: SE
SiZEj

Implementation: Company Size <Code>

def get_employees(company
site pywlklhnt Slte{}

e Had to extract the Wikipedia page stocks - pywikibot. Page(site, copany_name)
text stocks.text
e Extract the info in “side box”
. spl;T?er text.split({"{{Infobox company\n|")
® Parse through and flnd employees L;:e{tzgtitt:ﬂitter[a‘-}.encade{'utf—ﬂ']'
o Default = 25250 (average value) header = salittertal encode | uErg’)
e With this provide number, calculate infobox = header-split(*] hosepage =)o}

infobox = re.sub('[\n{}\[\11', '', infobox)
table_rows - infobox. spllt{ I 1

num_employees 56
row table_rows:
"employees" row. Lower():
Llen(row.split("="))
num_employees

num_employees = row.split("= }[l.strip().split(" ") [@]
num_employees - re. sub('[8- 9] , num_employees)
Len{num_employees 1:
num_employees

num_employees jﬂt{nquempuuyees}

Implementation: Programming Optimization

e Assuming there are generically n companies (n = 500 in this case)
o Not particularly large dataset - algorithmic runtime not particularly significant
e Querying online is very slow process

o Since had to access each of the company’s employee size several times, saved these values
o Values were cached in dictionary: key of company, value of employee size

o Allowed lookup of values in O(1) time
e Full algorithm runs in O(n?)

o Have to iterate through each of the companies and compute covariance

Implementation: Content-Based Analysis

e Alternative approach to deduce further relationships between companies

e Utilizes Natural Language Processing techniques, specifically Latent Dirichlet
Allocation

e Data obtained from each individual company Wikipedia pages

¢ Intended to add asymmetricity to the final correlation matrix

o Change in Company A — Company B =/= Company B — Company A
e Analyzes individual word occurrences to retroactively create “topics”
e Assigns probabilistically a topic to each document

Implementation: LDA

e All programming complete in Python, in addition to packages noted earlier
o NLTK - Natural Language Toolkit, for NLP analysis in Python
o Stop-Words - Detects concept-less words in specific languages
o Tokenizer / PorterStemmer - Tools to clean raw text data and remove “stop-words”
e General algorithmic steps of analysis:
o Extract n paragraphs of text from company-specific Wikipedia pages
o Data cleaning: Perform analysis on cleaned data
m Tokenize each paragraph into individual words
o Fits the data via unsupervised modeling onto k set of topics
o Probabilistically correlates each company-text onto the most-likely topic

Implementation <Code>: LDA

e Takes the text from the Wiki page e —
o Extracts the HTML of pages using requests e _; .
o Determines “page text” by value in <p> tags ﬁgﬂggms[mmﬁiﬁﬁm?ﬁ{r;;i; company i companies]

names [0] '3m’
e Breaks the text into several “tokens”
e Used for performing concept extraction

doc_set - [get_contents(company) company names]
token_set [tokenize({doc) doc doc_set]

token_set

def get_contents(web_page):
site - pywikibot.Site()
stocks = pywikibot.Page(site, web_page)
len({stocks.text) .

tokenize(co

tokenizer g

raw - companytext.lower()

tokens - tokenizer.tokenize(raw)

page - requests.get('https:{}'.format{stocks.permalink({}}).content
paragraphs - BeautifulSoup(page).findAll{'p')
num_elements - min(2, len{paragraphs))
page_contents = " ".join([BeautifulSoup(stri{par)).p.text
par paragraphs] [@:num_elements]).encode('utf-8')
page_contents

en_stop - get_stop_words('en')
stopped_tokens [i i tokens 1. en_stop]

p_stemmer = PorterStemmer()
stopped_tokens

Implementation <Code>: LDA

def get_topics():

® Implements the LDA mOdelr token_set - get_wikitext()

numpy_token = numpy.array(token_set)

specifically topical analysis

e Normalizes the probabilities e e
associated with each topic n in range(15): |
sum_pr = sum{numpy_tokenin,:1)
e Generates topic with highest n tr Paaa (153
. tc-pic_mc-ét_pr. numpy_token[n] .argmax()
prObablllty for each company ("company: {} topic: {M\n{}...".format(n, topic_most_pr))

topic_most_pr

Part 4: Results and Discussion

BN

Results: Numerical

(@)

0.00130614
0.00364147
2.54E-06
0.0001998
0.00012838
0.00203898
0.00038679

) | 0.00077381

7.98E-05
0.00063164

|| 0.00015063
| 0.00012488
0.00293311

B
0.00164849
0
0.00364147
2.94E-06
0.00015998
0.00012838
0.00203898
0.00038679
0.00077381
7.98E-05
0.00063164
0.00015063
0.00012488
0.00293311

—_ -

Numerical results: asymmetric
Piece of the 500x500 matrix

B S - E_ |
0.001e4849 1.11E-05 3.02E-05
0.00391842 8.80E-06 2.39E-05
0 2.45E-05 6.67E-05

2.94E-06 0 004056782
00001998 1.35E-06 0
000012838 8.65E-07 0.02803698
000203898 0,00010152 3.73E-05
000038679 000014229 7.08E-06
000077381 000028467 142E-05
000443536 0.00160233 1.46E-08
0.00063164 3.14E-05 1.16E-05
0.00015063 0.00302557 2.76E-08
0.00012488 B.41E-07 0,00681209
0.00293311 0.00014603 5.37E-05

F

~ 3.02E-05
2.39E-05
6.67E-05
0.01265022
0.01090884

0

3.73E-05

7.08E-06

1.42E-05

1.46E-06

1.16E-05

2.76E-06

0.00681809
5.37E-05

[6 [H S _— |
0.00555192 | 0.0002231 0.0002231 3.0
0.0004805 0.00017677 0.00017677 0.002
0.00133562 0.00049282 0.00049282 6.6

7.99E-06 2.17E-05 2.17E-05 0.0001
735605 2.70E-05 2.70E-05 3.
4,72E-05 1.74E-05 1.74E05 2.3
0 0.00203898 0.00203838 0.0002
0.0010514 0 0.002858 0.0003

0.00210343 0.00571772 0 0.0007
0.00021685 0.00058946 0.00058346
0.00171657 0.00063164 0.00063164 8.5
0.00040947 0.00111304 0.00111304

4.59E-05 1.69E-05

0.00797303 0.00293311

Results: Visualization

e Both the same data visualizations - left is scaled to be more sensitive
e Right exposes lack of symmetry

Goldman Covariance S&P 500 Goldman Covariance S&P 500

Results: Natural Language Processing

Partial output of LDA Analysis

company:
company:
company:
company:

company:

Strengths of Approach

e MCA creates factor-based fundamentals for second part of analysis,
increasing accuracy and embodying fundamental economic intuition

e LDA analyzes remaining content, capturing diverse, unexpected correlatory
factors that MCA may not capture

e Larger companies correlate to each other stronger than smaller companies
do; this phenomenon is accounted for by large companies having longer
Wikipedia pages. Resulting LDA analysis would thus yield a stronger
correlation for larger companies.

Weaknesses of Approach

e Approach can be improved using market sector-specific factors, but we do
not have the background to implement such

e Two-part analysis process grants increased accuracy, but at the cost of
increased runtime

e Only runs using feature extraction rather than concept

Part 5: Conclusions and Future Work

BN

Future Improvements

e For current algorithm
o Sector/Sub-industry comparison would extend beyond comparing names directly
o Specifically: “Technology” sectors might affect “Industrial” sectors
e Determine more accurate metrics for company influence
o Solely using number of employees seems quite biased
o Small companies may apply hold influence on niche (Uber in early stages)
e Apply LDA to algorithm
o Would perform concept extraction on the pages

o Determine whether any similarity/overlap between the pages

Conclusions

e Found asymmetric covariance matrix for S&P 500 Companies
e Implemented using features extractions with Python and pywikibot scripts

e Learned how to clean raw data available online
o Many difficulties due to inconsistencies in formatting
e Highly applicable to similar projects due to prevalence of web data

Questions?

Thank you for your attention!

